140. Два автомобиля движутся прямолинейно и равномерно в одном направлении со следующими скоростями: v1=54 км/ч и v2=36 км/ч. В начале наблюдения расстояние между ними было равно 18 км. Через какое время первый автомобиль догонит идущий впереди второй авт
140. Два автомобиля движутся прямолинейно и равномерно в одном направлении со следующими скоростями: v1=54 км/ч и v2=36 км/ч. В начале наблюдения расстояние между ними было равно 18 км. Через какое время первый автомобиль догонит идущий впереди второй автомобиль? Решите задачу аналитически и графически.

1. Время, через которое первый автомобиль догонит второго, можно определить по формуле


— скорость первого автомобиля относительно

2. Графический способ.
Уравнения движения тел имеют вид

Ответ из учебника(задачника): 140. 1 ч.
Задача C8. Два автомобиля движутся co скоростями 36 км/ч и 54 км/ч под углом = 60° друг к другу. В некоторый момент времени один из них оказался в пункте М, а другой в тот же момент — в пункте N, расстояние между которыми S = 10 км.
Задача C8. Два автомобиля движутся co скоростями 36 км/ч и 54 км/ч под углом 
Через какой промежуток времени t расстояние между автомобилями станет минимальным?
Обозначим v — скорость автомобиля слева на рис. 49, 

t — промежуток времени, через который расстояние между автомобилями станет минимальным, v — скорость автомобиля слева, если бы автомобиль справа был неподвижен, l — кратчайшее расстояние между обоими автомобилями, L — путь, пройденный левым автомобилем со скоростью V, Р — один из острых углов треугольника Мmn, h — длину перпендикуляра, опущенного из конца вектора 
Решение:
Как же определить момент времени, когда расстояние между автомобилями станет наименьшим? Они же все время едут, причем каждый со своей скоростью — попробуй поймать этот самый момент.
Сразу дадим совет: при решении подобных задач, когда два тела одновременно движутся относительно друг друга, примите одно из них, например, автомобиль справа, за неподвижное, тогда можно считать, что автомобиль слева, продолжая двигаться со своей скоростью 



Если теперь из точки N, где находится правый неподвижный автомобиль, опустить перпендикуляр NP на эту траекторию, то длина этого перпендикуляра l и будет тем самым кратчайшим расстоянием между обоими автомобилями. Искомый промежуток времени t можно найти, если разделить путь L, пройденный левым автомобилем со скоростью v и равный длине отрезка МР, на эту скорость:
Скорость v найти несложно. В тупоугольном треугольнике скоростей вектор этой скорости лежит против тупого угла, равного 180° — 

Труднее определить длину отрезка L = МР. Этот отрезок является катетом в прямоугольном треугольнике MPN, где гипотенузой служит известное нам расстояние S=MN, а другим катетом — неизвестный отрезок l. Этот треугольник прямоугольный, но и от этого мало радости, ведь отрезок l взять неоткуда. Вот если бы в этом треугольнике нам был известен очень острый угол PMN, мы тогда могли найти катет L через прилежащий к этому катету угол PMN и гипотенузу S.
Но как определить этот острый угол? Обозначим его как-нибудь, например, 

Вот если бы как-нибудь найти этот h. Может, опустить из конца вектора скорости 


Зная h, находим из прямоугольного треугольника Мmn 
Теперь уже просто. Из прямоугольного треугольника MPN выражаем катет L через известную нам гипотенузу S и найденный угол 
Нам осталось подставить правые части равенств (2) и (5) в формулу (1), и непростая задача, потребовавшая от нас столько выдумки и сообразительности, будет решена. Подставляем:
В общем-то задача решена, но хорошо бы полученную формулу упростить. Сделать это несложно. Достаточно сгруппировать под корнем первый и последний члены, вынести 
Теперь мы видим, что под корнем стоит квадрат суммы величин 
Выразим все величины в единицах СИ: 36 км/ч = 10 м/с, 54 км/ч = 15 м/с, 10 км = 1- 10* м.
Подставим числа и произведем вычисления:
Эта задача взята со страницы подробного решения задач по физике, там расположена теория и подробное решения задач по всем темам физики:
Возможно вам будут полезны эти задачи:
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
Два автомобиля движутся по дороге с постоянными скоростями 36 и 54 км ч начальное
Автомобиль массой 2 т проезжает верхнюю точку выпуклого моста, двигаясь с постоянной по модулю скоростью 36 км/ч. Радиус кривизны моста равен 40 м. Из приведённого ниже списка выберите все правильные утверждения, характеризующих движение автомобиля по мосту.
1) Равнодействующая сил, действующих на автомобиль в верхней точке моста, сонаправлена с его скоростью.
2) Сила, с которой мост действует на автомобиль в верхней точке моста, меньше 20 000 Н и направлена вертикально вниз.
3) В верхней точке моста автомобиль действует на мост с силой, равной 15 000 Н.
5) Ускорение автомобиля в верхней точке моста направлено противоположно его скорости.
Переведем скорость
Рассмотрим рисунок, поясняющий движение автомобиля по выпуклому мосту.
1. Неверно. Равнодействующая сил реакции опоры N и силы тяжести mg по второму закону Ньютона сонаправлена с вектором ускорения. А т. к. автомобиль движется по окружности, то ускорение направлено к центру окружности, т. е. вниз. Следовательно, и равнодействующая направлена вниз. Скорость автомобиля при движении по окружности направлена по касательной (в данном случае — горизонтально).
2. Неверно. Сила, с которой мост действует на автомобиль — сила реакции опоры — направлена вертикально вверх.
3. Верно. Сила, с которой автомобиль действует на мост, равна весу тела. По третьему закону Ньютона P = N. Найдём силу реакции опоры по второму закону Ньютона Центростремительное ускорение равно
Значит, Р = 15 кН.
4. Верно. (см. пункт 3).
5. Неверно. Вектор ускорения направлен вертикально вниз, вектор скорости — горизонтально (см. пункт 1).














